

Using GIS as a Tool to Enhance Community Involvement

Environmental Science Program NCCU

THE POWER OF MAPS

Contact email: rmalhotra@nccu.edu

Marcia Bradshaw Rakesh Malhotra Peter Muriuki Kimberly Outen

Introduction

- Rakesh Malhotra, PhD
 - University of Georgia
 - Post-doctoral Associate, North Carolina Central University
 - ESRI Authorized Instructor since 1997 (This is not an ESRI course)
 - Primarily use and favor ESRI software
 - ArcGIS (desktop)
 - ArcIMS, ArcSDE, (server based)

Goals

- GOALS
 - GIS "BASICS"
 - GIS is at the confluence of:
 - Geography
 - Computer Science
 - Community Involvement
 - Right software
 - Good Data sources

Expectations

EXPECTATIONS

- Introduction to the subject
- "Tip of the iceberg"
- Emphasis on fundamentals / foundation
- Demonstration uses:
 - Free software (ArcExplorer)
 - Simple data layers (County based dataset)
 - Basic techniques (Mapping, Visual perspective)

GIS Concepts

- Map
- Scale
- Raster and Vector (Basic Data Structures)
- Layers of information
- Two components Graphic and Attributes
- Three types of vector data

GIS Concepts (MAP)

- A map is a model a model of reality
- A map contains specific information
- Information on the map may be graphic (geometry) or text (attributes)
- A map consists of layers
- A map contains additional information such as Scale, Title, North Arrow

GIS Concepts (PROJECTION)

 Map Projection – a mathematical relationship that converts spherical coordinate systems (lat / long) to rectangular coordinate system

(x / y)

http://erg.usgs.gov/isb/pubs/MapProjections/projections.html

GIS CONCEPTS (SCALE)

- A map is a model and scale represents the ratio of shrinkage
- Three important factors:
 - SCALE
 - PAPER SIZE
 - EXTENT

$$SCALE = \frac{EXTENT}{PAPER\,SIZE}$$

(SMALL SCALE)

1:1000

1:100

(LARGE SCALE)

GIS CONCEPTS (RASTER/VECTOR)

Raster

- Pixels
- Continuous Data
- Resolution Dependent

Vector

- Points / Lines / Polygons
- Discrete Data
- Resolution Independent (but based on scale of original data)

DEMO – GOOGLE MAPS

GIS CONCEPTS (LAYERS OF DATA)

MAP HEIRARCHY

- One map can (and usually does) contain several "LAYERS" of data
- A layers consists of "SIMILAR" features
- Features have"GEOMETRY" and"ATTRIBUTES"

GIS CONCEPTS (VECTOR DATA)

- POINT Basic "building block"
 - X, Y coordinate
 - school (on a city map)
 - city (on a country map)
- LINES collection of points
- POLYGONS –
 collection of points with
 same start and end

- Scale dependent
- Everything is a polygon

Levels of a GIS

- Data collection
- Mapping
- Data Analysis
- Programming

Levels of a GIS (Data collection)

- Digitizing
 - Converting paper maps layers to digital layers
- GPS
 - Sampling site
 - Reconnaissance
- Aerial / satellite imagery (data compilation)
 - Area delineation
 - Site assessment

Levels of a GIS (Mapping)

- Present information / visual perspective
- Use of cartographic principles
- Ancillary information such as legend, descriptive text, scale are used to enhance information provided by the two main components (graphic and attributes)

Levels of a GIS (Data Analysis)

- Relationships between layers of information
- Location analysis
- Proximity analysis
- Cluster analysis

Levels of a GIS (Programming)

- Stringing tasks together
- Repetition
- Simplifying use by creating tools / button clicks that are easier for new users
- Scripting / Visual models / Computer Programs
- Caution: Sometimes the underlying complexity is lost to the user

Components of a GIS

- Software
- Hardware
- Data
- People
- Procedures

Components of a GIS (Software)

- The "S" in the GIS
- Several available, some generic and some specialized; some proprietary some open source
- Two basic versions Desktop and Client/Server
- Tightly coupled to the OS / Hardware

Components of a GIS (Hardware)

- Two basic types
 - PC
 - Word processing, etc.
 - Server
 - Email, Web, etc.
- GIS (ESRI software) has both (PC and server) options

Components of a GIS (Data)

- The "GI" in GIS
- Each software has a native type
- For example, ArcGIS
 - GEODATBASE
 - Personal (PC based)
 - Enterprise (Server based)
- ArcView
 - Shapefile (actually a collection of at least 3 files)

Components of a GIS (Procedures)

- Akin to GIS Functions
 - Data collection
 - Mapping
 - Data Analysis
 - Programming

GIS Data Sources

- US Census
- City/County GIS Department
 - http://www.ci.durham.nc.us/departments/gis/
 - http://www.lib.ncsu.edu/gis/counties.html
- Internet
 - www.nationalatlas.gov
 - www.geographynetwork.com
- Data Clearinghouses
 - Search "GIS data clearinghouse"

GIS as Applied to Community Involvement

- Visual perspective to the information
- Who is affected?
- What is there?
- Where are things located?
- And more

Software

- ArcExplorer (GIS Data Viewer)
 - http://www.esri.com/software/arcexplorer/index.html
 - Free Download
 - ESRI (Creator of GIS software)
- GeoMedia Viewer (GIS Data Viewer)
 - http://www.intergraph.com/gviewer/
 - Free Download
 - Intergraph (Creator of GIS software)

Software / Data Demonstration

- Download ArcExplorer
- Work with some GIS Data
- CD can be provided